Pleraplysillin-2, a Further Furanosesquiterpenoid from the Sponge Pleraplysilla spinifera

Sponges of the family Spongidae (genus Spongia, Hippospongia and Ircinia) were previously shown to contain a number of closely related linear furanoterpenes containing 211 and 25 carbon atoms2, all of which are characterized by terminal β -mono-substituted furan rings.

More recently Pleraplysilla spinifera (family Aplysillidae belonging to the same order of Dictioceratida as the family Spongidae) has provided 2 furanosesquiterpenes, 1 and 2, both with the feature of a terminal β -monosubstituted furan ring3.

Examination of the more polar fractions eluted with benzen-petrol (1:1) from the SiO₂ column of the solvent extracts of this sponge has now led to the isolation (0.5% of the dry sponge) of an ester, 3, with a sesquiterpenoid acidic moiety including a 4-methyl-2-substituted furan ring and an hemiterpene alcoholic part characterized as 3-hydroxymethylfuran. Here we report structural determination of this novel substance, which we called pleraplysillin-2.

Pleraplysillin-2, C₂₀H₂₄O₄, gives a positive Ehrlich test for furans and shows v_{max} (liquid film) 1715 and 1635 $(\alpha, \beta$ -unsaturated ester) and 1030, 880 and 765 (furan) cm⁻¹ and λ_{max} 222 nm ($\varepsilon=14,400$ in CH₃OH). The NMRspectrum (100 MHz, CCl_4 , δ -scale) with decoupling experiments indicated the presence of a 4-methyl-2-methylene substituted furan: 1.95 (3H, s), 3.17 (2H, s), 5.76 and 6.95 (1H each, bs); irradiation at 6.95 (furan-\alpha-H; H-1) caused a sharpening of both the furan- β -H (5.76, H-4) and the methyl at 1.95 (CH₃ on C-2)⁴; in the reverse experiment irradiation at 1.95 resulted in a distinct sharpening of the furan $-\alpha$ -H signal only, while the furan $-\beta$ -H broad singlet has been simplified by irradiation on the methylene at 3.17 (H₆, H₆). The Me-C=CH-CO₂-part structure

(Me/CO₂-cis)⁵ was derived from signals at 2.15 (3H, d, I = 1Hz) and 5.61 (1H, bs) with mutual coupling, while the β -methylene-substituted furan was indicated by the presence of signals at 7.40, 7.32, 6.38 (1H, each, bs) and 4.93 (2H, s). Two peaks at 2.20 (4H, =C-CH₂CH₂-C=) and 5.17 (1H, t, J = 4Hz, CH = C) and a trans vinyl methyl at 1.596 are the remaining signal in the spectrum.

Treatment of pleraplysillin-2 with alkali yielded an $\alpha,\beta\text{-unsaturated carboxylic acid, 4, $C_{15}H_{20}O_3$ (M^+/e 248),}$ v_{max} 3300-2500 (b), 1680 and 1635 cm⁻¹, whose NMRspectrum was almost identical to that of the parent compound, apart from the signals for the β -methylenesubstituted furan. Oxidative ozonolysis of the natural ester afforded levulinic acid (5).

Consequently the spectral and chemical evidence leads to the conclusion that pleraplysillin-2 has the structure 3, which is also supported by the fragmentation pattern in the MS, which, besides M+ (m/e 328, 65%), includes peaks for M+-CH₂C₄H₃O (m/e 247, 60%), M+-OCH₂C₄H₃O $(m/e \ 231, \ 33\%)$, $(CH_3)C_4H_2OCH_2^+$ $(m/e \ 95, \ 90\%)$, $C_4H_3OCH_2^+$ $(m/e \ 81, \ 92\%)$ and the base peak at $m/e \ 149$, corresponding to the fragment $(CH_3)C_4H_2OCH_2C(CH_3) =$ CHCH₂+, originating from the expected allylic cleavage of the 10, 11 bond.

Riassunto. Si riporta l'isolamento dalla spugna Pleraplysilla spinitera di un ulteriore furanosesquiterpenoide pleraplysillina-2 per il quale si dimostra la struttura 3.

G. CIMINO, S. DE STEFANO and L. MINALE

Laboratorio per la Chimica e Fisica di Molecole di Interesse Biologico del C.N.R., Via Toiano 2, Arco Felice (Napoli, Italy), 18 February 1974.

- ¹ E. FATTORUSSO, L. MINALE, G. SODANO and E. TRIVELLONE, Tetrahedron 27, 3909 (1971); G. CIMINO, S. DE STEFANO, L. Minale and E. Fattorusso, 27, 4673 (1971); 28, 267 (1972); G. Cimino, S. De Stefano and L. Minale, 28, 5983 (1972).
- ² G. Cimino, S. De Stefano, L. Minale and E. Fattorusso, Tetrahedron 28, 333 (1972); F. CAFIERI, E. FATTORUSSO, C. Santocrace and L. Minale, 28, 1579 (1972); G. Cimino, S. De Stefano and L. Minale, 28, 1315 (1972). - D. S. Faulkner, Tetrahedron Lett. 1973, 3821.
- ³ G. Cimino, S. De Stefano, L. Minale and E. Trivellone, Tetrahedron 28, 4761 (1972).

 4 R. S. Abraham and W. A. Thomas, J. chem. Soc. 9, 127 (1966).
- ⁵ S. Bory, M. Fétizon and P. Lazlo, Bull. chem. Soc. fr. 1963, 2310, and references cited therein.
- ⁶ R. B. Bates and D. M. Gale, J. Am. chem. Soc. 82, 5749 (1960). -R. B. Bates, D. M. Gale and B. S. Grunner, J. org. Chem. 28, 1086 (1963).

Scalaradial, a Third Sesterterpene with the Tetracarbocyclic Skeleton of Scalarin, from the Sponge Cacospongia mollior

Recent chemical interest in the sponges metabolites has led, inter alia, to the isolation of the 2 related tetracarbocylic sesterterpenes, scalarin (1)1 and deoxoscalarin (2)2, from Cacospongia scalaris and the taxonomically related Spongia officinalis, respectively. They are members of a new class of sesterterpenes, originating from generanylfarnesol by a cyclization initiated at the isopro-

pylidene group, which is typical of triterpenes. Of interest is the close biogenetic relationship of the sponges sester-

- ¹ E. Fattorusso, S. Magno, C. Santacroce and D. Sica, Tetrahedron 28, 6021 (1972).
- ² G. Cimino, S. De Stefano and L. Minale, Experientia 29, 1063 (1973).